public class NaiveBayesModel extends ProbabilisticClassificationModel<Vector,NaiveBayesModel>
NaiveBayes
param: pi log of class priors, whose dimension is C (number of classes)
param: theta log of class conditional probabilities, whose dimension is C (number of classes)
by D (number of features)| Modifier and Type | Method and Description |
|---|---|
NaiveBayesModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static NaiveBayesModel |
fromOld(NaiveBayesModel oldModel,
NaiveBayes parent)
Convert a model from the old API
|
java.lang.String |
getModelType() |
double |
getSmoothing() |
Param<java.lang.String> |
modelType()
The model type which is a string (case-sensitive).
|
int |
numClasses()
Number of classes (values which the label can take).
|
Vector |
pi() |
protected Vector |
predictRaw(Vector features)
Raw prediction for each possible label.
|
protected Vector |
raw2probabilityInPlace(Vector rawPrediction)
Estimate the probability of each class given the raw prediction,
doing the computation in-place.
|
DoubleParam |
smoothing()
The smoothing parameter.
|
Matrix |
theta() |
java.lang.String |
toString() |
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
normalizeToProbabilitiesInPlace, predictProbability, probability2prediction, raw2prediction, raw2probability, setProbabilityCol, setThresholds, transformpredict, setRawPredictionColfeaturesDataType, setFeaturesCol, setPredictionCol, transformImpl, transformSchematransform, transform, transformtransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamsinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static NaiveBayesModel fromOld(NaiveBayesModel oldModel, NaiveBayes parent)
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic Vector pi()
public Matrix theta()
public int numClasses()
ClassificationModelnumClasses in class ClassificationModel<Vector,NaiveBayesModel>protected Vector predictRaw(Vector features)
ClassificationModeltransform() and output rawPredictionCol.
predictRaw in class ClassificationModel<Vector,NaiveBayesModel>features - (undocumented)protected Vector raw2probabilityInPlace(Vector rawPrediction)
ProbabilisticClassificationModel
This internal method is used to implement transform() and output probabilityCol.
raw2probabilityInPlace in class ProbabilisticClassificationModel<Vector,NaiveBayesModel>rawPrediction - (undocumented)public NaiveBayesModel copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Model<NaiveBayesModel>extra - (undocumented)defaultCopy()public java.lang.String toString()
toString in interface IdentifiabletoString in class java.lang.Objectpublic DoubleParam smoothing()
public double getSmoothing()
public Param<java.lang.String> modelType()
public java.lang.String getModelType()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.