public final class DecisionTreeRegressor extends Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel>
Decision tree learning algorithm
for regression.
It supports both continuous and categorical features.| Constructor and Description |
|---|
DecisionTreeRegressor() |
DecisionTreeRegressor(java.lang.String uid) |
| Modifier and Type | Method and Description |
|---|---|
DecisionTreeRegressor |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<java.lang.String> |
featuresCol()
Param for features column name.
|
java.lang.String |
getFeaturesCol() |
java.lang.String |
getLabelCol() |
java.lang.String |
getPredictionCol() |
Param<java.lang.String> |
labelCol()
Param for label column name.
|
Param<java.lang.String> |
predictionCol()
Param for prediction column name.
|
DecisionTreeRegressor |
setCacheNodeIds(boolean value) |
DecisionTreeRegressor |
setCheckpointInterval(int value) |
DecisionTreeRegressor |
setImpurity(java.lang.String value) |
DecisionTreeRegressor |
setMaxBins(int value) |
DecisionTreeRegressor |
setMaxDepth(int value) |
DecisionTreeRegressor |
setMaxMemoryInMB(int value) |
DecisionTreeRegressor |
setMinInfoGain(double value) |
DecisionTreeRegressor |
setMinInstancesPerNode(int value) |
DecisionTreeRegressor |
setSeed(long value) |
static java.lang.String[] |
supportedImpurities()
Accessor for supported impurities: variance
|
protected DecisionTreeRegressionModel |
train(DataFrame dataset)
Train a model using the given dataset and parameters.
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
extractLabeledPoints, fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchematransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic DecisionTreeRegressor(java.lang.String uid)
public DecisionTreeRegressor()
public static final java.lang.String[] supportedImpurities()
public java.lang.String uid()
Identifiablepublic DecisionTreeRegressor setMaxDepth(int value)
public DecisionTreeRegressor setMaxBins(int value)
public DecisionTreeRegressor setMinInstancesPerNode(int value)
public DecisionTreeRegressor setMinInfoGain(double value)
public DecisionTreeRegressor setMaxMemoryInMB(int value)
public DecisionTreeRegressor setCacheNodeIds(boolean value)
public DecisionTreeRegressor setCheckpointInterval(int value)
public DecisionTreeRegressor setImpurity(java.lang.String value)
public DecisionTreeRegressor setSeed(long value)
protected DecisionTreeRegressionModel train(DataFrame dataset)
Predictorfit() to avoid dealing with schema validation
and copying parameters into the model.
train in class Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel>dataset - Training datasetpublic DecisionTreeRegressor copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel>extra - (undocumented)defaultCopy()public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.public Param<java.lang.String> labelCol()
public java.lang.String getLabelCol()
public Param<java.lang.String> featuresCol()
public java.lang.String getFeaturesCol()
public Param<java.lang.String> predictionCol()
public java.lang.String getPredictionCol()